TRAIL
TRAIL
トップページ
グループ紹介
トピックス
メンバー
設備
プロジェクト
講義
講義一覧
深層学習(基礎講座)
強化学習(集中セミナー)
世界モデルと知能
人工知能応用プロジェクト
教材・資料
教材・資料一覧
ロボットシステム入門
業績
ブログ
お問合せ
日本語
日本語
English
1
Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning
Progress in deep reinforcement learning (RL) research is largely enabled by benchmark task environments. However, analyzing the nature of those environments is often overlooked. In particular, we still do not have agreeable ways to measure the …
Deployment-Efficient Reinforcement Learning via Model-Based Offline Optimization
We propose a novel method that achieves both high sample-efficiency in offline RL and "deployment-efficiency" in online RL.
引用
×